Выхлопные газы

Степень сжатия

Чем выше степень сжатия, тем, вообще говоря, выше тепловая эффективность двигателя, и, следовательно, лучше качество его работы и меньше расход топлива. Существует два главных препятствия на пути к более высоким степеням сжатия — увеличение эмиссии и тенденция к детонации. Проблема с эмиссией возникает из-за высокой температуры, которая, в свою очередь, вызывает большее образование окислов NOx. Увеличение температуры делает топливо-воздушную смесь более склонной к самовозгоранию и, следовательно, создает высокий риск взрывного сгорания. Страны, в которых в течение некоторого времени действовали строгие инструкции регулирования эмиссии, например США и Япония, стремились развивать двигатели с более низкими степенями сжатия. Однако благодаря изменениям в конструкции камеры сгорания и более широкому распространению цилиндров с четырьмя клапанами вкупе с развитием систем электронного управления и другими методами снижения уровня эмиссии, степень сжатия за прошедшие годы возросла.

Влияние выхлопных газов на здоровье человека код

Выхлопная труба легкового автомобиля

Загрязнение окружающей среды отработавшими газами и горюче-смазочными материалами локомотивных дизелей.

У подвесных моторов выхлопные газы выбрасываются в воду, на многих моделях — через ступицу гребного винта

Наибольшую опасность представляют оксиды азота, примерно в 10 раз более опасные, чем угарный газ, доля токсичности альдегидов относительно невелика и составляет 4—5 % от общей токсичности выхлопных газов. Токсичность различных углеводородов сильно отличается. Непредельные углеводороды в присутствии диоксида азота фотохимически окисляются, образуя ядовитые кислородсодержащие соединения — составляющие смога.

Обнаруженные в газах полициклические ароматические углеводороды — сильные канцерогены. Среди них наиболее изучен бензпирен, кроме него, обнаружены производные антрацена:

  • 1,2-бензантрацен
  • 1,2,6,7-дибензантрацен
  • 5,10-диметил-1,2-бензантрацен

Кроме того, при использовании сернистых бензинов в отходящие газы могут входить оксиды серы, при применении этилированных бензинов — свинец (тетраэтилсвинец), бром, хлор, их соединения. Считается, что аэрозоли галоидных соединений свинца могут подвергаться каталитическим и фотохимическим превращениям, участвуя в образовании смога.

Длительный контакт со средой, отравленной выхлопными газами автомобилей, вызывает общее ослабление организма — иммунодефицит. Кроме того, газы сами по себе могут стать причиной различных заболеваний. Например, дыхательной недостаточности, гайморита, ларинготрахеита, бронхита, бронхопневмонии, рака лёгкого. Также выхлопные газы вызывают атеросклероз сосудов головного мозга. Опосредованно через легочную патологию могут возникнуть и различные нарушения сердечно-сосудистой системы. Также выхлопные газы повреждают ткани нервной системы и повышают риск развития деменции.

Отравления в замкнутом пространстве | код

Довольно часты случаи отравления выхлопными газами, в том числе с летальными исходами автомобилистов в гаражах, закрытых стоянках и внутри автомобилей (при утечке в салон), при плохой вентиляции. Также бывали случаи отравления выхлопными газами в квартирах домов, находящихся вблизи автостоянок (вдыхание выхлопных газов приводит к накоплению токсичных веществ в организме человека). Для борьбы с такими случаями вводятся строительные нормы вентиляции стоянок и сооружений, связанных с эксплуатацией и обслуживанием автомобилей.

Выбор момента и длительности открытия клапана

Влияние момента срабатывания клапана на состав выхлопа может быть весьма значительным. Один из главных факторов — продолжительность перекрытия клапанов. Это время, в течение которого впускной клапан уже открыт, но выпускной клапан еще не закрыт. Продолжительность этой фазы определяет количество выхлопного газа, остающегося в цилиндре, когда выпускной клапан наконец закрывается. Этот газ оказывает существенное влияние на температуру реакции (больше выхлопного газа — ниже температура), и, следовательно, на эмиссию NOx. Главное противоречие здесь в том, что на более высоких скоростях увеличение фазы впуска увеличивает развиваемую мощность. С другой стороны, это вызывает большее перекрытие клапанов и на холостом ходу, что может значительно увеличивать эмиссию углеводородов. Это противоречие привело к введению электронных систем управления моментом и продолжительностью открытия клапанов.

Рециркуляция выхлопного газа

Эта методика используется, прежде всего, для того, чтобы уменьшить пиковые температуры сгорания и следовательно, образование окислов азота (NOx). Рециркуляция выхлопного газа (exnfcust gas recirculation — EGR) может быть или внутренняя, за счет перекрытия клапанов, или же внешняя, через обычные трубы и клапан. Определенная порция выхлопного газа просто возвращается к впускному коллектору двигателя.

Рециркуляцией управляют с помощью электроники по установкам в постоянной памяти блока управления двигателем. Это гарантирует, что не будут затронуты ходовые качества автомобиля, а также, что доля рециркуляции будет контролироваться. Если эта доля слишком велика, увеличивается эмиссия углеводородов. На рисунке показано влияние доли рециркуляции на выхлоп и расход топлива.

Один из недостатков систем EGR заключается в том, что клапаны через некоторый период времени могут забиваться продуктами выхлопа и, таким образом, изменять фактический процент рециркуляции. Однако теперь имеются клапаны, которые уменьшают эту проблему.

Система зажигания

Система зажигания может воздействовать на выхлопную эмиссию двумя способами:

  • во-первых, за счет качества произведенной искры
  • во-вторых, выбором момента образования искры

Качество искры будет определять ее способность зажечь смесь. Продолжительность искры, в частности, существенна при воспламенении более бедных смесей. Более сильная искра уменьшает вероятность осечек, которые могут привести к увеличению выброса углеводородов.

Понятно, что выбор момента зажигания является критическим фактором, и как всегда этот выбор является компромиссом между мощностью, ходовыми качествами автомобиля, потреблением топлива и эмиссией. На рисунке приведен график, показывающий влияние выбора момента зажигания на эмиссию и потребление топлива. Образование угарного газа зависит практически практически только от состава топливной смеси и лишь незначительно от выбора момента зажигания. Электронные и программные системы зажигания внесли существенный вклад на пути к достижению уровней эмиссии сегодняшних двигателей.

Конструкция камеры сгорания

Главный источник эмиссии углеводорода — несгоревшее топливо, которое находится в контакте со стенками камеры сгорания. По этой причине область стенок должна обладать как можно меньшей поверхностью и самой простой фирмой. Теоретический идеал — сфера, но сфера не совсем практична

Важно хорошее перемешивание порции и смеси в цилиндре, поскольку это способствует более качественному и быстрому горению. Возможно, еще важнее гарантированно хорошее перемешивание в области свечи зажигания

Это улучшает воспламенение. Лучше всего помещать свечу зажигания в центр камеры сгорания, поскольку это уменьшает вероятность взрывного сгорании за счет сокращения расстояния которое должен пройти фронт пламени.

Пути снижения выбросов и токсичности

Стимулом к сокращению объёмов предполагается заинтересованность в сокращении расхода топлива (крупная статья расходов в автомобильном транспорте).

  • Колоссальное влияние на количество выбросов (не считая сжигания топлива и времени) играет организация движения автомобилей в городе (значительная часть выбросов происходит в «пробках» и перед светофорами[источник не указан 2249 дней]). При удачной организации возможно применение менее мощных двигателей, при невысоких (экономичных) промежуточных скоростях.
  • Существенно снизить содержание углеводородов в отходящих газах, более чем в 2 раза, возможно применением в качестве топлива попутных нефтяных (пропан, бутан), или природного газов, при том, что главный недостаток природного газа — низкий запас хода, для города не столь значим.
  • Кроме состава топлива, на токсичность влияет состояние и настройка двигателя (особенно дизельного — выбросы сажи могут увеличиваться до 20 раз и карбюраторного — до 1,5—2 раз изменяются выбросы оксидов азота).
  • Значительно снижены выбросы (снижен расход топлива) в современных конструкциях двигателей с инжекторным питанием стабильной стехиометрической смесью неэтилированного бензина с установкой нейтрализатора, газовых двигателях, агрегатах с нагнетателями и охладителями воздуха, применением гибридного привода. Однако подобные конструкции сильно удорожают автомобили.
  • Испытания SAE показали, что эффективный способ снижения выбросов окислов азота (до 90 %) и в целом токсичных газов — впрыск в камеру сгорания воды.

Термическое дожигание топлива

Чтобы уменьшить долю углеводородов в выхлопе, задолго до широкого распространения каталитических конвертеров использовалось термическое дожигание топлива. Углеводороды действительно продолжают гореть в выпускном коллекторе, а недавнее исследование показало, что выбор материала используемого коллектора, например чугуна или нержавеющей стали, может иметь значимое воздействие на сокращение выбросов НС. При температурах приблизительно 600 «С, НС и СО сгорают или окисляются в Н2О и СО2. Если вводить в выпускной коллектор после клапанов воздух, то можно стимулировать процесс дожигания топлива.

Законодательное регулирование код

  • Контролируется качественный состав изготавливаемого и реализуемого топлива (в России это стандарты на топливо, региональные требования, в Европе — нормативы ЕВРО).
  • В России вводятся повышенные ставки транспортного налога на мощность двигателя автомобиля.
  • Топливо облагается специальными акцизами.
  • Предусмотрены нормативы на выпускаемые автомобили. В России и европейских странах приняты стандарты ЕВРО, задающие как токсичность, так и количественные показатели, например:
    • По Евро-3 выбросы: СН до 0,2 г/км, CO до 2,3 г/км и NOy до 0,15 г/км
    • По Евро-4 выбросы: СН до 0,1 г/км, CO до 1,0 г/км и NOy до 0,08 г/км
  • В некоторых регионах вводятся ограничения на движение большегрузного автотранспорта (например, в Москве).

Конструкции коллекторов

Газовый поток в зоне входных и выпускных коллекторов — очень сложный для изучения объект. Главная причина этой сложности — изменения характеристик потока, обусловленные не только изменениями в скорости двигателя, но также действием цилиндров как насосов. Это насосное действие цилиндров вызывает колебания давления в коллекторах. Если коллекторы и системы впуска и выпуска разработаны так, чтобы в соответствующий момент времени отразить назад волну давления, можно улучшить объемную эффективность работ коллекторов. Многие транспортные средства теперь оснащены трактами впуска регулируемой длины. Длинные тракты используются при низких скоростях вращения, а укороченные — при высоких.

Количество отходящих газов автомобилей

В основном определяется массовым расходом топлива автомобилями.
Расход по расстоянию нормируется и обычно указывается производителями (одна из потребительских характеристик). В отношении суммарного объема выходящих из глушителя выхлопных газов приблизительно можно ориентироваться на такую цифру — один килограмм сжигаемого бензина приводит к образованию примерно 16 килограммов смеси различных газов.

ВАЗ 2110 1,5k литра ВАЗ 2110 1,5i литра Mitsubishi Colt 5-D 1.1i литра ВАЗ 11113 0,75k литра ВАЗ 21055 1,5D литра
Расход в «городском» режиме, л/100км 9,1 8,6 7,0 6,4 5,7
Расход, равномерно 60 км/ч, л/100км 6,5 6,5 3,7 3,2 3,8
  • k — карбюраторный двигатель
  • i — инжекторный двигатель
  • D — дизельный двигатель
  • плотность бензина при +20С колеблется от 0,69 до 0,81 г/см³
  • плотность дизельного топлива при +20С по ГОСТ 305-82 не более 0,86 г/см³

Лямбда-контроль в замкнутом контуре управления

Действующие инструкции регулирования выбросов сделали почти обязательным замкнутый контур управления составом воздушно-топливной смеси в сочетании с каталитическим конвертером. В то же время несмотря на оживленные дискуссии, инженеры не достигли согласия о том, что лямбда-показатель должен обязательно быть ранен единице для всех эксплуатационных режимов.

Лямбда-контроль — система с замкнутым контуром управлении, действующая так, чтобы сигнал от кислородного датчика в выхлопе мог непосредственно влиять на количество вводимого топлива. На рисунке показана блок-схема системы управления по лямбда-показателю.

Результаты управления по лямбда-показателю и действие катализатора приведены на рисунке. Принцип действия системы следующий: лямбда-датчик генерирует напряжение, пропорциональное содержанию кислорода в выхлопе, содержание кислорода, в свою очередь, пропорционально отношению «воздух-топливо». При идеальном регулировании это напряжение составляет приблизительно 450 мВ. Если напряжение, полученное ECU, ниже этого значения (бедная смесь), количество введенного топлива понемногу увеличивается. Если напряжение сигнала выше порога (богатая смесь), количество топлива уменьшается. Это изменение в воздушно-топливном отношении не должно быть слишком резким, поскольку это заставит двигатель «взбрыкивать». Чтобы предотвратить это явление, блок управления двигателем содержит интегратор, который изменяет состав смеси в течение определенного времени.

Существует также задержка между формированием смеси в коллекторе и измерением содержания кислорода в выхлопном газе. Это обусловлено рабочим циклом двигателя и скоростью смеси на впуске, временем, необходимым выхлопным газам, чтобы достигнуть датчика, и временем реакции датчика. Эту задержку иногда называют «мертвым временем», и она может достигать одной секунды на скорости холостого хода и несколько сотен миллисекунд на более высоких скоростях двигателя.

Из-за «мертвого времени» смесь невозможно привести к точному значению лямбда = 1. Если в системе установлен интегратор, который может учитывать скорость двигателя, тогда удается удерживать значение лямбда смеси в диапазоне 0,97—1,03, то есть в области, в которой TWC наиболее эффективен.

Ссылка на основную публикацию